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LETTER TO THE EDITOR 
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Faculty of Mathematics, open University. Walton Hall, Milton Keynes, MK7 6AA. UK 

Received 25 October 1993 

Abstract, Using a generalization of the q-commulstion relations, we develop a formalism in 
which we define generalized q-bosomc operators. This f o ~ m  includes both types of the 
usual qdeformed bosons as special cases. The coherent sfates of these operators show interesting 
and novel noise reduction properlies including simultanm& squeedng m bath field components, 
unlike the conventional case in which squeezing is permitted in only one component. This also 
w m t s  with the usual quantum p u p  deformation which also only permits one-component 
squeezing. 

Since the advent of the theory of parastatistics [l, 21, there have been many attempts to 
generalize the canonical commutation relations. Motivation for such work has come from 
such diverse areas as resonance theory [3, 41, intermediate statistics [5], Lie-admissible 
models [6], non-unitary time evolution and quantum dissipative systems [7,8]. However, the 
real impetus in the recent study of deformed commutation relations has been the discovery 
of quantum groups and algebras [9-111 and the role played by the q-deformed boson [12- 
141 in their representation theory. Since that time, there has been a lot of attention paid to 
possible physical applications of such q-oscillators (e.g. [15-181) as well as deformations 
which involve more than one parameter 1191 or are dependent on a deformation function 
[20]. Recent work has shown the applicability of such deformed oscillator techniques to 
many phenomenological models in such fields as atomic and nuclear physics [21], quantum 
optics [22] and superintegrable systems [B]. 

In this letter, we investigate the properties of a generalized q-oscillator where the 
degree of deformation is functionally dependent on the number operator. By considering 
expectation values in analogues of coherent states, we see that certain classes of deformed 
oscillator have non-standard quantum noise properties. Applying this technique to the 
two types of q-bosons studied in connection with quantum groups, it is seen that, 
whereas thephysics-type boson has standard noise properties, the maths-type boson exhibits 
simultaneous noise reduction in both quadratures compared to the vacuum value. 

We use the singleparticle deformed “mutation relation [24] 
a,+ - f(N)a’u = 1 (1) 

where ut and a are generalized creation and annihilation operators, N is the number operator 
such that Nln)  = nln), f is a real function, and the vacuum IO) is defined by a10) = 0. 
This deformation scheme includes the various form hitherto defined in the literature. 

Examples: 

(i) f(N) = 1. 
This is the usual commutation relation of the Heisenberg-Weyl algebra and describes 
ordinary quantum mechanical bosonic systems such as the the harmonic oscillator. 
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(ii) f(N) = q. 
The so-called q-oscillator, first suggested by Arik and Coon [4]. It has since been studied 
in detail by several authors, e.g. Jannussis et al [7], and Kulish and Damaskinsky [ 141. 

This gives a deformed commutation relation equivalent to that of the q-boson first 
discovered by Macfarlane [ 121 and Biedenharn [13] in connection with the representation 
theory of quantum groups. 

where F ( N )  is an analytic function. This form of deformation can be related to the 
extensive work of Bonatsos, Daskaloyannis and others [20, 21, 231 on their deformed 
oscillator formalism as well as some later work by Jannussis (e.g. [U]). 

Building up normalized eigenstates of the number operator N by repeated application 

(iii) f ( ~ )  = (qN+' + I)/(q(qN + 1)). 

(iv) f(N) = ( F ( N  + 1) - l)/F(N) 

of the generalized creation operators in (I), we obtain 

(a')" lo) In) = - ([n]!)'/z 

"-I f ( n  - l)! 
= k=O f ( k ) !  ' 

The functions [n] can be thought of as generalizations of the basic numbers of q-analysis 
[26]. They obey a highly nonlinear arithmetic but for appropriate choice of the function f 
they tend in some limit to the ordinary integers. 

We first consider conventional coherent states of the oscillator which obey the 
undeformed commutation relation (f(N) = 1) and may be defined by 

alh) = AlA) (6) 

(7) IN = eXp(1A.l 1 exp(J-&lo) 

' 

or equivalently 
2 - I / z  

where the exponentional function, by definition, has the property 

(8) 

These definitions of coherent states have been used to generalize the concept to the cases 
where the commutation relations have been deformed. 

Given the q-commutation relation aut - q uta = 1, we may define coherent states IA) 

d 
-exp(h) = A exp(h). 
dx 

hY 
nlA) = Alh). (9) 

To achieve the alternative definition given by (7). it is necessary to introduce a q- 
derivative operator [26] such that 

q 4 E q W )  = AEq(AX)  (10) 
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where Eq(x) is the Jackson q-exponential [27]. When this is done, we see that 

IA) = Eq(lA\.lZ)-~Eq(Azzf)lO). (11) 
The same procedure can also be used to define q-coherent states for the Macfarlane- 

Biedenham oscillator (although in this case the generalization of the exponential function 
is different to that of Jackson). 

For [n], an analytic function of the variable n, defined by (5). it is possible to extend 
the above analysis to the case of bosonic creation and annihilation operators obeying the 
general commutation relations (1). 

We define an operator Dx such that 

Dz = X [ x i ] .  
- -  

This acts as a generalized derivative operator, e.g. 
DIx" = [n]x"-'. 

The eigenfunctions of Dx given by 

- are well defined provided the function f satisfies appropriate convergence criteria. If 
f ( n )  2 1 as n + 00 then E(x)  converges for all real values of x.  If f ( n )  1 as 
n + CO, then convergence is ensured for a range of x dependent on the function f. 

Since aE(Ant)]O) = AE(hat)lO), we can use E(x)  to define analogues of coherent 
states as normalized eigenstates of the generalized annihilation operator: 

I.\) = [E(lA12))-iE(Aat)10). (15) 
We now consider conventional (undeformed) bosons. 

The electromagnetic field components x and p are given by 

As usual, we define the variances (Ax) and (Ap) by 

(Ax)' = (x') - (x)' and (Ap)' = (p') - (a)'. (17) 
In the vacuum state 

The commutation relation for a and ut leads to the following uncertainty principle: 

@ M A P )  > $ ( [ ~ . ~ 1 ) 1  = f. (20) 
Thus the vacuum state attains the lower bound for the uncertainty, as do the coherent 

states. 
While it is impossible to lower the product (Ax)(Ap)  below the vacuum uncertainty 

value, it is nevertheless possible to define squeezed states [29] for which (at most) one 
quadrature lies below the vacuum value, i.e. 

1 1 
( A x )  < (Ax) ,  = - or (Ap)  < ( ~ p ) ~  = - JT JT' 
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If we now consider the generalized bosonic operators given by (I), using the same definitions 
for the the field quadratures x and p as in (16), we find that, just as in the conventional 
case, the vacuum uncertainty product (Ax)o(Ap)o = $ is a lower bound for all number 
states. However, unlike the conventional case, it is not a global lower b o d  

Consider the quadrature values in eigenstates of the generalized annihilation operator. 
We then have 

1 1 
( X ) ~ = ' ( A ~ - ( a t + a ) ~ A ) = - ( ~ + ~ )  J5 J5 

and 

where 

EJA 1 - (f(N + 1 ) ) A .  (25) 
If we choose 0 c f ( n )  c 1, then it can be shown that E&[' E (0,l) for A within the 
radius of convergence of the generalized exponential (14). 

Hence 

(Ax): = $1 -&f,.*IA['}. (26) 

(A~)A(AP)A = ${I - &f.nlAI'~ < :. (27) 

(28) 

W)A@P)A = $l([x, Pl)Al. (29) 
Thus we see that these generalized q-coherent states satisfy a restricted form of the minimum 
uncertainty property (Mum of the conventional coherent states. Additionally we see that 
there is a general noise reduction in both quadratures compared to their vacuum value. In 
conventional coherent states there is no noise reduction relative to the vacuum value. In 
conventional squeezed states, there is noise reduction in only one component. 

We can apply the preceding analysis to the qdefonned bosons studied recently in 
connection with quantum groups (see e.g. [9, 14, 15, 221). 

(i) 'Physics' q-bosons. First consider the q-bosons described by Macfarlane 1121 and 
Biedenham [13]. These use the definition of the generalized number, [n], discussed recently 
in the physics literature and so will be termed 'physics' q-bosons. They are characterized 
by the deformed commutation relation 

Evaluating the variance for the other component, we find that (Ap): = (Ax):, so 

However, it can also be shown that 
~ ( ~ - E ~ . A ~ ~ ~ ' ~ = $ I ( [ X , P ~ ) A ~  1 

so 

aut - q .+a = q-*, (30) 
This can be rewritten [24] as ' 

(31) 
where f(N) = (qN4' + 

In this case, for normalizable eigenstates, the function sf.A is negative and so 
simultaneous two-component noise reduction does not take place. This is in agreement 
with the findings of Kalriel and Solomon [I51 and Chiu et a! [30]. However, it can be 

a.' - f(N) uta = 1 

+ 1)). 
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shown that ordinary squeezing, i.e. noise reduction in one component compared to the 
vacuum (with a corresponding noise amplification in the other component), does take place 
[31, 321. 

(ii) 'Maths' q-bosons. We now consider the q-boson described by Arik and Coon [4]. 
This uses the generalized number function found in classical q-analysis and will therefore 
be termed a 'maths' q-boson. It is characterized by the deformed commutation relation 

aaf - q ata = 1. (32) 
For 4 E (0, l), the Jackson q-exponential Eq(lhlz) converges, provided E~I&I' = 

(1 - q)lbI' < 1. Given this condition on h, we have normalizable q-analogue coherent 
states satisfying (6) in which 

(33) 
Hence, for this type of q-boson, we do obtain noise reduction in both quadratures with 

(Ax): = (Ap): = (Ax),(App)~ = ${I -€qlhI*] < i. 1 

respect to the vacuum value. 
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